-

高增益、大帶寬,為什么電路還會發生振蕩?
在之前“高增益、高帶寬,如何兩者兼得?”一文中,我們探討了如何在實現高增益和高帶寬的同時還能保持足夠高的信噪比 (SNR)。這篇文章里我們將更加詳細地討論實施方法和可能發生的問題。
2020-05-18
高增益 大帶寬 振蕩
-

高增益與高帶寬如何兼得?
由于我們必須采用多個功率級,因而同時實現高增益(1000 - V/V乃至更高)和高帶寬(數十 MHz)可能是一種挑戰。除了高增益、高帶寬方面的電路要求,還需要重點關注噪聲和穩定性問題。
2020-05-18
放大器 高增益 高帶寬 噪聲
-

干貨 | 量子雷達的概要
歷經 70 余年的發展,雷達技術在理論、體制、實現 方法及技術應用等方面都已取得了很大的進展。但近年來,傳統雷達探測性能已接近經典物理學極限,如何進一步提升雷達系統性能成為了困擾科技人員的難題。
2020-05-15
量子雷達 雷達 存儲器
-

如何減小共模輻射電磁干擾?
共模輻射是由于接地電路中存在電壓降(如下圖),某些部位具有高電位的共模電壓,當外接電纜與這些部位連接時,就會在共模電壓激勵下產生共模電流,成為輻射電場的天線。這多數是由于接地系統中存在電壓降所造成的。共模輻射通常決定了產品的輻射性能。
2020-05-14
共模輻射 電磁干擾
-

汽車級MEMS振蕩器或將帶來革命性突破
新技術取代成熟技術通常能夠帶來功能上的突破。在過去的50多年里,半導體行業一直都在追求更小的尺寸、更快的速度以及更便宜的價格(和/或更高的性能以及可靠性等)。而現如今,汽車應用中的數字電路則對時序要求非常高,相比過去對于微機電系統(MEMS)振蕩器呈現出極大的需求。本文將討論各類汽車...
2020-05-14
汽車級 MEMS振蕩器
-

射頻PA+FEM導雜散差的原因分析
射頻 PA+FEM 加上屏蔽罩的傳導雜散更差(DCS 的二三次諧波),不知是何原因,請賜教!
2020-05-13
射頻PA FEM 輻射
-

比較器的振蕩來自何處?
比較器是一個簡單的概念-在輸入端對兩個電壓進行比較。輸出為高或者低。因此,在轉換的過程中為什么存在振蕩?
2020-05-13
比較器 振蕩
-

TI毫米波傳感器:邊緣智能化為自主工廠提供動力
從傳統的工業機器人系統到當今最新的協作機器人,各類機器人都依賴于能夠生成和處理大量高度變化數據的傳感器。這些數據可用于啟用能夠做出實時決策的自主機器人,從而實現更智能的事件管理,同時在動態的真實環境中保持生產力。
2020-05-13
TI 毫米波傳感器 邊緣智能化
-

如何調整用過線性電位計作為音量控制器的音量?
你曾用過線性電位計作為音量控制器嗎?如果你使用過,你可能會發現,音量跳變得非常快。如果想將音量調整得相當小,你可能需要safe-cracker般的靈敏觸覺。這時就需要對數電位計。
2020-05-11
線性電位計 音量控制器 音量
- OLED顯示器季度榜:華碩登頂,微星躍升,三星承壓
- 2nm量產+先進封裝,臺積電構筑AI算力時代的“絕對護城河”
- HBM4時代臨近,SK海力士被曝將獨占英偉達80%訂單
- 大聯大Q3凈利首破50億創紀錄,AI驅動2026年增長延續
- NAND閃存明年Q1繼續暴漲!存儲芯片全面進入賣方市場
- 音質一目了然!LHDC重磅升級,全新「段位」系統讓聽歌選耳機不再糾結
- 從“分布式”到“區域化”:汽車電氣架構的范式轉變
- 輕薄本能否運行120B大模型?英特爾以128GB內存與“感官覺醒”給出肯定答案
- 無人機選四旋翼還是六旋翼?從航拍到巡檢,全面剖析你的最佳選擇
- 破局"芯片墻"!黑芝麻武當C1200如何重構汽車中央計算底層邏輯
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall





